Collaboration reveals interplay between charge order and nanoscale superconductivity

Collaboration reveals interplay between charge order and nanoscale superconductivity


Credit: public domain CC0

High-temperature superconductivity is something of a holy grail for researchers studying quantum materials. Superconductors, which conduct electricity without dissipating energy, promise to revolutionize our energy and telecommunications systems. However, superconductors typically operate at extremely low temperatures, requiring elaborate freezers or expensive coolants. For this reason, scientists have worked tirelessly on understanding the fundamental mechanisms underlying high-temperature superconductivity with the ultimate goal of designing and engineering novel near-room-temperature superconducting quantum materials.

Fabio Boschini, a professor at the National Institute for Scientific Research (INRS), and North American scientists have studied the dynamics of the superconductor yttrium barium copper oxide (YBCO), which offers superconductivity at higher than normal temperatures, via time-resolved resonance X-ray free-electron laser scattering Linac Coherent Light Source (LCLS), SLAC (US). The research was published May 19 in Science. In this new study, the researchers were able to track how charge density waves in YBCO react to a sudden “quenching” of superconductivity, induced by an intense laser pulse.

“We are learning that charge density waves – self-organizing electrons behaving like ripples in water – and superconductivity interact at the nanoscale on ultrafast time scales. There is a very deep connection between the ’emergence of superconductivity and charge density waves’, says Fabio Boschini, co-investigator on this project and affiliate researcher at the Stewart Blusson Quantum Matter Institute (Blusson QMI).

“Until a few years ago, researchers underestimated the importance of the dynamics inside these materials,” said Giacomo Coslovich, principal investigator and scientist at the SLAC National Accelerator Laboratory in California. “Until this collaboration, we really did not have the tools to assess the dynamics of charge density waves in these materials. The opportunity to observe the evolution of the charge order is only possible thanks to to teams like ours sharing resources, and by the use of a free-electron laser to offer new insight into the dynamic properties of matter.”

With a better picture of the dynamic interactions underlying high-temperature superconductors, the researchers are optimistic that they can work with theoretical physicists to develop a framework that allows for a more nuanced understanding of how high-temperature superconductivity emerges. .

Collaboration is key

The present work is the result of a collaboration between researchers from several leading research centers and beamlines. “We started conducting our first experiments at the end of 2015 with the first characterization of the material at the Canadian Synchrotron Light Centre,” explains Boschini. Over time, the project involved many Blusson QMI researchers, such as MengXing Na whom I mentored and presented. to this work. It was an integral part of the data analysis.

“This work is significant for a number of reasons, but it also really shows the importance of forming lasting and meaningful collaborations and relationships,” Na said. “Some projects take a very long time, and it’s thanks to Giacomo’s leadership and persistence that we got there.”

The project brought together at least three generations of scientists, following some as they progressed through their postdoctoral careers and into professorships. The researchers are excited to expand on this work by using light as an optical button to control the on-off state of superconductivity.

Study opens up new possibilities for triggering room-temperature superconductivity with light

More information:
S. Wandel et al, Enhanced Charge Density Wave Coherence in a High-Temperature Light-Quenched Superconductor, Science (2022). DOI: 10.1126/science.abd7213

Provided by National Institute for Scientific Research

Quote: Collaboration Reveals Interaction Between Charge Order and Nanoscale Superconductivity (2022, May 20) Retrieved May 21, 2022 from -interplay-superconductivity-nanoscale.html

This document is subject to copyright. Except for fair use for purposes of private study or research, no part may be reproduced without written permission. The content is provided for information only.

#Collaboration #reveals #interplay #charge #order #nanoscale #superconductivity

Leave a Comment

Your email address will not be published. Required fields are marked *